A Statistical Framework for Real-Time Traffic Accident Recognition

Article Properties
Cite
Sadek, Samy, et al. “A Statistical Framework for Real-Time Traffic Accident Recognition”. Journal of Signal and Information Processing, vol. 01, no. 01, 2010, pp. 77-81, https://doi.org/10.4236/jsip.2010.11008.
Sadek, S., Al-Hamadi, A., Michaelis, B., & Sayed, U. (2010). A Statistical Framework for Real-Time Traffic Accident Recognition. Journal of Signal and Information Processing, 01(01), 77-81. https://doi.org/10.4236/jsip.2010.11008
Sadek S, Al-Hamadi A, Michaelis B, Sayed U. A Statistical Framework for Real-Time Traffic Accident Recognition. Journal of Signal and Information Processing. 2010;01(01):77-81.
Refrences
Title Journal Journal Categories Citations Publication Date
10.1109/CVPR.2005.177
10.1109/CVPR.2005.177
10.1109/CVPR.2005.177
10.1109/CVPR.2005.177
10.1109/CVPR.2005.177
Citations
Title Journal Journal Categories Citations Publication Date
A Discriminative Framework for Action Recognition Using f-HOL Features Information
  • Technology: Technology (General): Industrial engineering. Management engineering: Information technology
  • Science: Science (General): Cybernetics: Information theory
7 2016
An Efficient Approach to Load Balancing of Vector Maps in CyberGIS Cluster Environment

Geomatica 1 2014
Citations Analysis
The category Technology: Technology (General): Industrial engineering. Management engineering: Information technology 1 is the most commonly referenced area in studies that cite this article.