Частотные характеристики линейных рекуррентных последовательностей над кольцами Галуа

Article Properties
Refrences
Title Journal Journal Categories Citations Publication Date
Estimates for the number of appearances of symbols on a segment of recurrent sequence over a finite field Discrete Mathematics and Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
5 1992
Kerdock code in a cyclic form Discrete Mathematics and Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
77 1989
Оценки частот появления нулей в линейных рекуррентных последовательностях векторов 2005
Оценки частот появления элементов в линейных рекуррентных последовательностях над кольцами Галуа 2000
Распределение знаков в последовательности прямоугольных матриц над конечным полем 1997
Citations Analysis
The category Science: Mathematics: Instruments and machines: Electronic computers. Computer science 2 is the most commonly referenced area in studies that cite this article. The first research to cite this article was titled Метод тригонометрических сумм для исследования частот $r$-грамм в старших координатных последовательностях линейных рекуррент над кольцом $\mathbb{Z}_{2^n}$ and was published in 2010. The most recent citation comes from a 2023 study titled Cross-correlation function for the representations of one class of sequences over Galois rings. This article reached its peak citation in 2023, with 3 citations. It has been cited in 8 different journals. Among related journals, the Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] cited this research the most, with 8 citations. The chart below illustrates the annual citation trends for this article.
Citations used this article by year