Конечность числа арифметических групп, порожденных отражениями, в пространствах Лобачевского

Article Properties
Refrences
Title Journal Journal Categories Citations Publication Date
Arithmetic Fuchsian groups of genus zero Pure and Applied Mathematics Quarterly
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2006
О классификации арифметических групп, порожденных отражениями, в пространствах Лобачевского 1981
Отсутствие кристаллографических групп отражений в пространствах Лобачевского большой размерности Функциональный анализ и его приложения 1981
Об арифметических группах, порожденных отражениями, в пространствах Лобачевского 1980
The absence of crystallographic groups of reflections in Lobachevsky spaces of large dimension 1985
Citations Analysis
Category Category Repetition
Science: Mathematics5
The category Science: Mathematics 5 is the most commonly referenced area in studies that cite this article. The first research to cite this article was titled Hyperbolic reflection groups associated to the quadratic forms $${-3x_0^2 + x_1^2 + \cdots + x_n^2}$$ and was published in 2010. The most recent citation comes from a 2022 study titled FROM GEOMETRY TO ARITHMETIC OF COMPACT HYPERBOLIC COXETER POLYTOPES. This article reached its peak citation in 2019, with 2 citations. It has been cited in 7 different journals. Among related journals, the Izvestiya: Mathematics cited this research the most, with 2 citations. The chart below illustrates the annual citation trends for this article.
Citations used this article by year