On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$

Article Properties
  • Language
    Russian
  • DOI (url)
  • Publication Date
    2022/01/01
  • Indian UGC (journal)
  • Refrences
    8
  • Aleksandr Alekseevich Makhnev N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg ORCID
  • Mikhail Petrovich Golubyatnikov N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Abstract
Cite
Makhnev, Aleksandr Alekseevich, and Mikhail Petrovich Golubyatnikov. “On Small Distance-Regular Graphs With the Intersection Arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$”. Diskretnaya Matematika, vol. 34, no. 1, 2022, pp. 76-87, https://doi.org/10.4213/dm1698.
Makhnev, A. A., & Golubyatnikov, M. P. (2022). On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$. Diskretnaya Matematika, 34(1), 76-87. https://doi.org/10.4213/dm1698
Makhnev, Aleksandr Alekseevich, and Mikhail Petrovich Golubyatnikov. “On Small Distance-Regular Graphs With the Intersection Arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$”. Diskretnaya Matematika 34, no. 1 (2022): 76-87. https://doi.org/10.4213/dm1698.
Makhnev AA, Golubyatnikov MP. On small distance-regular graphs with the intersection arrays $\{mn-1,(m-1)(n+1)$, $n-m+1;1,1,(m-1)(n+1)\}$. Diskretnaya Matematika. 2022;34(1):76-87.
Refrences
Title Journal Journal Categories Citations Publication Date
On distance-regular graphs with $c_2=2$

Diskretnaya Matematika 1 2020
Distance-Regular Shilla Graphs with $b_2=c_2$

Matematicheskie Zametki 3 2018
Автоморфизмы графа с массивом пересечений $\{nm-1,nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ 2020
Об автоморфизмах небольших дистанционно регулярных графов с массивами пересечений $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ 2019
Автоморфизмы дистанционно регулярного графа с массивом пересечений $\{24,18,9;1,1,16\}$ 2019
Refrences Analysis
It primarily includes studies from Matematicheskie Zametki and Diskretnaya Matematika. The chart below illustrates the number of referenced publications per year.
Refrences used by this article by year