On finite pseudorandom binary sequences III: The Liouville function, I

Article Properties
  • Language
    English
  • Publication Date
    1999/01/01
  • Indian UGC (journal)
  • Citations
    19
  • Julien Cassaigne
  • Sébastien Ferenczi
  • Christian Mauduit
  • Jöel Rivat
  • András Sárközy
Cite
Cassaigne, Julien, et al. “On Finite Pseudorandom Binary Sequences III: The Liouville Function, I”. Acta Arithmetica, vol. 87, no. 4, 1999, pp. 367-90, https://doi.org/10.4064/aa-87-4-367-390.
Cassaigne, J., Ferenczi, S., Mauduit, C., Rivat, J., & Sárközy, A. (1999). On finite pseudorandom binary sequences III: The Liouville function, I. Acta Arithmetica, 87(4), 367-390. https://doi.org/10.4064/aa-87-4-367-390
Cassaigne J, Ferenczi S, Mauduit C, Rivat J, Sárközy A. On finite pseudorandom binary sequences III: The Liouville function, I. Acta Arithmetica. 1999;87(4):367-90.
Citations
Title Journal Journal Categories Citations Publication Date
Pseudorandom Binary Sequences: Quality Measures and Number-Theoretic Constructions IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electronics: Computer engineering. Computer hardware
  • Science: Science (General): Cybernetics: Information theory
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electric apparatus and materials. Electric circuits. Electric networks
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electronics
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electronics
2023
Pseudorandom sequences derived from automatic sequences Cryptography and Communications
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science: Computer software
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electronics: Computer engineering. Computer hardware
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
2 2022
On the Correlation Measures of Subsets Annals of Combinatorics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2020
On the bivariate Erdős–Kac theorem and correlations of the Möbius function

Mathematical Proceedings of the Cambridge Philosophical Society
  • Science: Mathematics
2019
The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures Duke Mathematical Journal
  • Science: Mathematics
22 2019
Citations Analysis