基于MultiResHNet的结构光三维重建技术

Article Properties
Cite
Yang Liting 杨丽婷, et al. “基于MultiResHNet的结构光三维重建技术”. Laser &Amp; Optoelectronics Progress, vol. 60, no. 20, 2023, p. 2015006, https://doi.org/10.3788/lop223203.
Yang Liting 杨., Liu Xiaoliang 刘., Chu Xiuxiang 储., & Zhou Lu 周. (2023). 基于MultiResHNet的结构光三维重建技术. Laser &Amp; Optoelectronics Progress, 60(20), 2015006. https://doi.org/10.3788/lop223203
Yang Liting 杨, Liu Xiaoliang 刘, Chu Xiuxiang 储, Zhou Lu 周. 基于MultiResHNet的结构光三维重建技术. Laser & Optoelectronics Progress. 2023;60(20):2015006.
Journal Categories
Science
Physics
Optics
Light
Technology
Electrical engineering
Electronics
Nuclear engineering
Electric apparatus and materials
Electric circuits
Electric networks
Refrences
Title Journal Journal Categories Citations Publication Date
The application of deep-learning technology to fringe projection 3D imaging 2020
Application of deep learning technology to fringe projection 3D imaging Infrared and Laser Engineering 2 2020
Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks

Sensors
  • Technology: Chemical technology
  • Science: Chemistry: Analytical chemistry
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electric apparatus and materials. Electric circuits. Electric networks
  • Science: Mathematics: Instruments and machines
  • Science: Chemistry: Analytical chemistry
  • Science: Chemistry
58 2020
Deep neural networks for single- shot structured light profilometry 2019
One-step robust deep learning phase unwrapping 2019