A note on Kantorovich and Ando inequalities

Article Properties
  • Language
    English
  • Publication Date
    2023/01/01
  • Journal
  • Indian UGC (journal)
  • Refrences
    24
  • Mohammad Sababheh Department of basic sciences, Princess Sumaya University For Technology, Al Jubaiha, Amman, Jordan
  • Hamid Moradi Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Ibrahim Gümüş Department of Mathematics, Faculty of Arts and Sciences, Adıaman University, Adıyaman, Turkey
  • Shigeru Furuichi Department of Information Science, College of Humanities and Sciences, Nihon University, Sakurajyousui, Setagaya-ku, Tokyo, Japan
Abstract
Cite
Sababheh, Mohammad, et al. “A Note on Kantorovich and Ando Inequalities”. Filomat, vol. 37, no. 13, 2023, pp. 4171-83, https://doi.org/10.2298/fil2313171s.
Sababheh, M., Moradi, H., Gümüş, I., & Furuichi, S. (2023). A note on Kantorovich and Ando inequalities. Filomat, 37(13), 4171-4183. https://doi.org/10.2298/fil2313171s
Sababheh, Mohammad, Hamid Moradi, Ibrahim Gümüş, and Shigeru Furuichi. “A Note on Kantorovich and Ando Inequalities”. Filomat 37, no. 13 (2023): 4171-83. https://doi.org/10.2298/fil2313171s.
Sababheh M, Moradi H, Gümüş I, Furuichi S. A note on Kantorovich and Ando inequalities. Filomat. 2023;37(13):4171-83.
Journal Categories
Science
Mathematics
Technology
Technology (General)
Industrial engineering
Management engineering
Applied mathematics
Quantitative methods
Refrences
Title Journal Journal Categories Citations Publication Date
10.1090/S0002-9939-1959-0105028-3
Geometric means Linear Algebra and its Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
162 2004
Operator log-convex functions and operator means Mathematische Annalen
  • Science: Mathematics
51 2010
10.1016/S0034-4877(19)30083-7
10.1090/S0002-9939-10-10386-4