On Calogero–Moser cellular characters for imprimitive complex reflection groups

Article Properties
Cite
Jacon, Nicolas, and Abel Lacabanne. “On Calogero–Moser Cellular Characters for Imprimitive Complex Reflection Groups”. Tunisian Journal of Mathematics, vol. 5, no. 4, 2023, pp. 605-2, https://doi.org/10.2140/tunis.2023.5.605.
Jacon, N., & Lacabanne, A. (2023). On Calogero–Moser cellular characters for imprimitive complex reflection groups. Tunisian Journal of Mathematics, 5(4), 605-625. https://doi.org/10.2140/tunis.2023.5.605
Jacon N, Lacabanne A. On Calogero–Moser cellular characters for imprimitive complex reflection groups. Tunisian Journal of Mathematics. 2023;5(4):605-2.
Journal Category
Science
Mathematics
Refrences
Title Journal Journal Categories Citations Publication Date
Constructible characters and ${\boldsymbol{b}}$-invariant Bulletin of the Belgian Mathematical Society - Simon Stevin
  • Science: Mathematics
1 2015
Représentations unipotentes génériques et blocs des groupes réductifs finis 1993
10.1016/S0764-4442(00)88470-0
The Calogero–Moser partition and Rouquier families for complex reflection groups Journal of Algebra
  • Science: Mathematics
9 2010
Unipotent Degrees of Imprimitive Complex Reflection Groups Journal of Algebra
  • Science: Mathematics
42 1995