Le flot géodésique des quotients géométriquement finis des géométries de Hilbert

Article Properties
Cite
Crampon, Mickaël, and Ludovic Marquis. “Le Flot géodésique Des Quotients géométriquement Finis Des géométries De Hilbert”. Pacific Journal of Mathematics, vol. 268, no. 2, 2014, pp. 313-69, https://doi.org/10.2140/pjm.2014.268.313.
Crampon, M., & Marquis, L. (2014). Le flot géodésique des quotients géométriquement finis des géométries de Hilbert. Pacific Journal of Mathematics, 268(2), 313-369. https://doi.org/10.2140/pjm.2014.268.313
Crampon M, Marquis L. Le flot géodésique des quotients géométriquement finis des géométries de Hilbert. Pacific Journal of Mathematics. 2014;268(2):313-69.
Refrences
Title Journal Journal Categories Citations Publication Date
10.2969/aspm/02610033 2000
Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane Bulletin de la Société mathématique de France
  • Science: Mathematics
6 2006
10.1017/CBO9780511809187 1995
Sur les variétés localement affines et localement projectives Bulletin de la Société mathématique de France
  • Science: Mathematics
64 1960
Algebraic groups and arithmetic 2004
Citations
Title Journal Journal Categories Citations Publication Date
Ergodicity and equidistribution in Hilbert geometry Journal of Modern Dynamics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2023
Relatively dominated representations Annales de l'Institut Fourier
  • Science: Mathematics
10 2022
Entropy rigidity for finite volume strictly convex projective manifolds Geometriae Dedicata
  • Science: Mathematics
2021
Primitive stable representations in higher rank semisimple Lie groups Revista Matemática Complutense
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2 2020
Approximability of convex bodies and volume entropy in Hilbert geometry Pacific Journal of Mathematics
  • Science: Mathematics
2017
Citations Analysis
The category Science: Mathematics 6 is the most commonly referenced area in studies that cite this article. The first research to cite this article was titled Entropy Rigidity of Hilbert and Riemannian Metrics and was published in 2016. The most recent citation comes from a 2023 study titled Ergodicity and equidistribution in Hilbert geometry. This article reached its peak citation in 2023, with 1 citations. It has been cited in 6 different journals. Among related journals, the Journal of Modern Dynamics cited this research the most, with 1 citations. The chart below illustrates the annual citation trends for this article.
Citations used this article by year