Towards logarithmic GLSM : the r–spin case

Article Properties
Cite
Chen, Qile, et al. “Towards Logarithmic GLSM : The r–spin”. Geometry &Amp; Topology, vol. 26, no. 7, 2022, pp. 2855-39, https://doi.org/10.2140/gt.2022.26.2855.
Chen, Q., Janda, F., Ruan, Y., & Sauvaget, A. (2022). Towards logarithmic GLSM : the r–spin case. Geometry &Amp; Topology, 26(7), 2855-2939. https://doi.org/10.2140/gt.2022.26.2855
Chen, Qile, Felix Janda, Yongbin Ruan, and Adrien Sauvaget. “Towards Logarithmic GLSM : The r–spin”. Geometry &Amp; Topology 26, no. 7 (2022): 2855-2939. https://doi.org/10.2140/gt.2022.26.2855.
Chen Q, Janda F, Ruan Y, Sauvaget A. Towards logarithmic GLSM : the r–spin case. Geometry & Topology. 2022;26(7):2855-939.
Refrences
Title Journal Journal Categories Citations Publication Date
A Degeneration Formula of GW-Invariants Journal of Differential Geometry
  • Science: Mathematics
123 2002
Stable Morphisms to Singular Schemes and Relative Stable Morphisms Journal of Differential Geometry
  • Science: Mathematics
91 2001
Topological methods in modern mathematics 1993
Algebraic analysis, geometry, and number theory 1989
Moduli of morphisms of logarithmic schemes Algebra & Number Theory
  • Science: Mathematics
13 2016