Decoupling inequalities for quadratic forms

Article Properties
  • Publication Date
    2023/02/01
  • Indian UGC (journal)
  • Refrences
    60
  • Citations
    2
  • Shaoming Guo Department of Mathematics, University of Wisconsin, Madison, Wisconsin, USA
  • Changkeun Oh Department of Mathematics, University of Wisconsin, Madison, Wisconsin, USA
  • Ruixiang Zhang Department of Mathematics, University of California, Berkeley, California, USA
  • Pavel Zorin-Kranich Mathematical Institute, University of Bonn, Bonn, Germany
Cite
Guo, Shaoming, et al. “Decoupling Inequalities for Quadratic Forms”. Duke Mathematical Journal, vol. 172, no. 2, 2023, https://doi.org/10.1215/00127094-2022-0033.
Guo, S., Oh, C., Zhang, R., & Zorin-Kranich, P. (2023). Decoupling inequalities for quadratic forms. Duke Mathematical Journal, 172(2). https://doi.org/10.1215/00127094-2022-0033
Guo S, Oh C, Zhang R, Zorin-Kranich P. Decoupling inequalities for quadratic forms. Duke Mathematical Journal. 2023;172(2).
Refrences
Title Journal Journal Categories Citations Publication Date
EFFECTIVE l 2 DECOUPLING FOR THE PARABOLA Mathematika
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2 2020
An $l^2$ decoupling interpretation of efficient congruencing: the parabola Revista Matemática Iberoamericana
  • Science: Mathematics
  • Science: Mathematics
5 2021
10.1007/PL00001652
10.1215/S0012-7094-99-09610-2
10.4171/RMI/1332
Citations
Title Journal Journal Categories Citations Publication Date
Fourier decay of fractal measures on surfaces of co-dimension two in R5 Journal of Functional Analysis
  • Science: Mathematics
2024
Regularized Brascamp–lieb Inequalities and an Application

The Quarterly Journal of Mathematics
  • Science: Mathematics
4 2021
Citations Analysis
Category Category Repetition
Science: Mathematics2
The category Science: Mathematics 2 is the most commonly referenced area in studies that cite this article.