Convergence of the kinetic annealing for general potentials

Article Properties
  • DOI (url)
  • Publication Date
    2022/01/01
  • Indian UGC (journal)
  • Refrences
    22
  • Citations
    1
  • Lucas Journel Laboratoire Jacques-Louis Lions, Sorbonne Universite, France
  • Pierre Monmarché Laboratoire Jacques-Louis Lions, Sorbonne Universite, France
Cite
Journel, Lucas, and Pierre Monmarché. “Convergence of the Kinetic Annealing for General Potentials”. Electronic Journal of Probability, vol. 27, no. none, 2022, https://doi.org/10.1214/22-ejp891.
Journel, L., & Monmarché, P. (2022). Convergence of the kinetic annealing for general potentials. Electronic Journal of Probability, 27(none). https://doi.org/10.1214/22-ejp891
Journel L, Monmarché P. Convergence of the kinetic annealing for general potentials. Electronic Journal of Probability. 2022;27(none).
Refrences
Title Journal Journal Categories Citations Publication Date
10.1090/surv/207
10.3150/16-BEJ820
Asymptotics of the spectral gap with applications to the theory of simulated annealing Journal of Functional Analysis
  • Science: Mathematics
88 1989
10.1007/BF01224127
Hypocoercivity in metastable settings and kinetic simulated annealing Probability Theory and Related Fields
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Science: Mathematics
10 2018
Citations
Title Journal Journal Categories Citations Publication Date
An entropic approach for Hamiltonian Monte Carlo: The idealized case The Annals of Applied Probability
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Science: Mathematics
2024
Citations Analysis
The category Science: Mathematics: Probabilities. Mathematical statistics 1 is the most commonly referenced area in studies that cite this article.