Asymptotic Mesh Independence of Newton's Method Revisited

Article Properties
Cite
Weiser, Martin, et al. “Asymptotic Mesh Independence of Newton’s Method Revisited”. SIAM Journal on Numerical Analysis, vol. 42, no. 5, 2005, pp. 1830-45, https://doi.org/10.1137/s0036142903434047.
Weiser, M., Schiela, A., & Deuflhard, P. (2005). Asymptotic Mesh Independence of Newton’s Method Revisited. SIAM Journal on Numerical Analysis, 42(5), 1830-1845. https://doi.org/10.1137/s0036142903434047
Weiser, Martin, Anton Schiela, and Peter Deuflhard. “Asymptotic Mesh Independence of Newton’s Method Revisited”. SIAM Journal on Numerical Analysis 42, no. 5 (2005): 1830-45. https://doi.org/10.1137/s0036142903434047.
Weiser M, Schiela A, Deuflhard P. Asymptotic Mesh Independence of Newton’s Method Revisited. SIAM Journal on Numerical Analysis. 2005;42(5):1830-45.
Refrences
Title Journal Journal Categories Citations Publication Date
Asymptotic Mesh Independence of Newton–Galerkin Methods via a Refined Mysovskii Theorem SIAM Journal on Numerical Analysis
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
36 1992
Affine Invariant Convergence Theorems for Newton’s Method and Extensions to Related Methods SIAM Journal on Numerical Analysis
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
170 1979
10.1023/A:1010912305365
Mesh-Independence of Lagrange-SQP Methods with Lipschitz-Continuous Lagrange Multiplier Updates Optimization Methods and Software
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science: Computer software
  • Technology: Manufactures: Production management. Operations management
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
5 2002
10.1137/S0363012998334468