On Terwilliger graphs with µ = 4

Article Properties
Cite
Gavrilyuk, A. L. “On Terwilliger Graphs With µ = 4”. Proceedings of the Steklov Institute of Mathematics, vol. 267, no. S1, 2009, pp. 90-99, https://doi.org/10.1134/s0081543809070098.
Gavrilyuk, A. L. (2009). On Terwilliger graphs with µ = 4. Proceedings of the Steklov Institute of Mathematics, 267(S1), 90-99. https://doi.org/10.1134/s0081543809070098
Gavrilyuk, A. L. “On Terwilliger Graphs With µ = 4”. Proceedings of the Steklov Institute of Mathematics 267, no. S1 (2009): 90-99. https://doi.org/10.1134/s0081543809070098.
Gavrilyuk AL. On Terwilliger graphs with µ = 4. Proceedings of the Steklov Institute of Mathematics. 2009;267(S1):90-9.
Journal Categories
Science
Mathematics
Technology
Technology (General)
Industrial engineering
Management engineering
Applied mathematics
Quantitative methods
Refrences
Title Journal Journal Categories Citations Publication Date
Графы Тервиллигера с $\mule3$ Matematicheskie Zametki 2 2007
10.1007/BF02110729 Sibirskii matematicheskii zhurnal 1996
A generalization of Moore graphs of diameter two Journal of Combinatorial Theory, Series B
  • Science: Mathematics
19 1971
A. L. Gavrilyuk and A. A. Makhnev, Dokl. Ross. Akad. Nauk 421(4), 445 (2008). 2008
A. L. Gavrilyuk and A. A. Makhnev, Dokl. Ross. Akad. Nauk 417(2), 151 (2007). 2007
Refrences Analysis
It primarily includes studies from Sibirskii matematicheskii zhurnal and Matematicheskie Zametki. The chart below illustrates the number of referenced publications per year.
Refrences used by this article by year