10.1063/1.1710717 | 2004 |
10.1088/1367-2630/5/1/138 | 2003 |
M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, M. M. Zeigler, Proc. IEEE91, 1940 (2003). | 2003 |
10.1080/10408430208500497 | 2002 |
10.1088/0953-8984/14/36/102 | 2002 |
10.1147/rd.451.0011 | 2001 |
10.1063/1.1407306 | 2001 |
10.1023/A:1010907928709 | 2001 |
10.1016/S0009-2614(01)01066-1 | 2001 |
10.1063/1.1288166 | 2000 |
10.1016/0039-6028(92)90183-7 | 1992 |
I. L. Spain, in Chemistry and Physics of Carbon, P. L. Walker, P. A. Thrower, Eds. (Dekker, New York, 1981), pp. 119–304. | 1981 |
10.1126/science.1060928 | |
10.1080/00018730110113644 | |
10.1038/41284 | |
Other methods of preparing thin graphitic layers exist. The closest analogs of FLG are nanometer-sized patches of graphene on top of pyrolytic graphite ( 12 13 ) carbon films grown on single-crystal metal substrates ( 14 ) and mesoscopic graphitic disks with thickness down to ∼60 graphene layers ( 8 9 ). | |
See supporting data on Science Online. | |
10.1126/science.287.5453.622 | |
We believe that our thinnest FLG samples (as in Fig. 2A) are in fact zero-gap semiconductors because small nonzero values of δϵ found experimentally can be attributed to inhomogeneous doping which smears the zero-gap state over a small range of V g and leads to finite apparent δϵ. | |
Supported by the UK Engineering and Physical Sciences Research Council and the Russian Academy of Sciences (S.V.M. S.V.D.). We thank L. Eaves E. Hill and O. Shklyarevskii for discussions and interest. | |