Gaussian upper bounds for the heat kernel on evolving manifolds

Article Properties
Abstract
Cite
Buzano, Reto, and Louis Yudowitz. “Gaussian Upper Bounds for the Heat Kernel on Evolving Manifolds”. Journal of the London Mathematical Society, vol. 108, no. 5, 2023, pp. 1747-68, https://doi.org/10.1112/jlms.12793.
Buzano, R., & Yudowitz, L. (2023). Gaussian upper bounds for the heat kernel on evolving manifolds. Journal of the London Mathematical Society, 108(5), 1747-1768. https://doi.org/10.1112/jlms.12793
Buzano, Reto, and Louis Yudowitz. “Gaussian Upper Bounds for the Heat Kernel on Evolving Manifolds”. Journal of the London Mathematical Society 108, no. 5 (2023): 1747-68. https://doi.org/10.1112/jlms.12793.
Buzano R, Yudowitz L. Gaussian upper bounds for the heat kernel on evolving manifolds. Journal of the London Mathematical Society. 2023;108(5):1747-68.
Refrences
Title Journal Journal Categories Citations Publication Date
Gaussian upper bounds for the heat kernel on arbitrary manifolds 1997
Upper bounds for symmetric Markov transition functions Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Science: Mathematics
1987
The twisted Kähler–Ricci flow 2016
Monotone volume formulas for geometric flows 2010
Stabilization of solutions of the third mixed problem for a second order parabolic equation in a non‐cylindrical domain (in Russian) 1980