ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES

Article Properties
  • Language
    English
  • DOI (url)
  • Publication Date
    2015/09/30
  • Indian UGC (journal)
  • Refrences
    46
  • Citations
    48
  • Sara Biagini Department of Economics and Management University of Pisa
  • Bruno Bouchard CEREMADE Université Paris Dauphine and CREST‐ENSAE
  • Constantinos Kardaras Department of Statistics London School of Economics and Political Science
  • Marcel Nutz Departments of Statistics and Mathematics Columbia University New York
Abstract
Cite
Biagini, Sara, et al. “ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES”. Mathematical Finance, vol. 27, no. 4, 2015, pp. 963-87, https://doi.org/10.1111/mafi.12110.
Biagini, S., Bouchard, B., Kardaras, C., & Nutz, M. (2015). ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES. Mathematical Finance, 27(4), 963-987. https://doi.org/10.1111/mafi.12110
Biagini, Sara, Bruno Bouchard, Constantinos Kardaras, and Marcel Nutz. “ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES”. Mathematical Finance 27, no. 4 (2015): 963-87. https://doi.org/10.1111/mafi.12110.
Biagini S, Bouchard B, Kardaras C, Nutz M. ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES. Mathematical Finance. 2015;27(4):963-87.
Journal Categories
Science
Mathematics
Social Sciences
Commerce
Business
Social Sciences
Economic theory
Demography
Economics as a science
Social Sciences
Finance
Social Sciences
Statistics
Refrences
Title Journal Journal Categories Citations Publication Date
On the Robust Superhedging of Measurable Claims 2013
Superreplication under Volatility Uncertainty for Measurable Claims Electronic Journal of Probability
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Science: Mathematics
2013
Pathwise Construction of Stochastic Integrals 2012
Optional Decomposition and Lagrange Multipliers Finance and Stochastics
  • Science: Mathematics
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Social Sciences: Finance
  • Social Sciences: Statistics
  • Social Sciences: Economic theory. Demography: Economics as a science
  • Social Sciences: Commerce: Business
  • Social Sciences: Economic theory. Demography: Economics as a science
1998
Semimartingale Theory and Stochastic Calculus 1992
Citations
Title Journal Journal Categories Citations Publication Date
The Cox-Ingersoll-Ross process under volatility uncertainty Journal of Mathematical Analysis and Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2024
Pathwise convergence under Knightian uncertainty Journal of Mathematical Analysis and Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2023
A model‐free approach to continuous‐time finance

Mathematical Finance
  • Social Sciences: Finance
  • Social Sciences: Economic theory. Demography: Economics as a science
  • Social Sciences: Statistics
  • Science: Mathematics
  • Social Sciences: Commerce: Business
  • Social Sciences: Economic theory. Demography: Economics as a science
1 2023
Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation

Management Science
  • Technology: Manufactures: Production management. Operations management
  • Social Sciences: Commerce: Business: Personnel management. Employment management
  • Social Sciences: Industries. Land use. Labor: Management. Industrial management
  • Social Sciences: Commerce: Business
  • Social Sciences: Economic theory. Demography: Economics as a science
1 2023
Pricing interest rate derivatives under volatility uncertainty

Annals of Operations Research
  • Technology: Manufactures: Production management. Operations management
  • Science: Mathematics
  • Technology: Engineering (General). Civil engineering (General)
  • Technology: Engineering (General). Civil engineering (General)
2022
Citations Analysis
The category Science: Mathematics 34 is the most commonly referenced area in studies that cite this article. The first research to cite this article was titled Quantile Hedging in a Semi-Static Market with Model Uncertainty and was published in 2014. The most recent citation comes from a 2024 study titled The Cox-Ingersoll-Ross process under volatility uncertainty. This article reached its peak citation in 2017, with 8 citations. It has been cited in 24 different journals, 4% of which are open access. Among related journals, the Finance and Stochastics cited this research the most, with 6 citations. The chart below illustrates the annual citation trends for this article.
Citations used this article by year