Concavity of the Auxiliary Function for Classical-Quantum Channels

Article Properties
Cite
Cheng, Hao-Chung, and Min-Hsiu Hsieh. “Concavity of the Auxiliary Function for Classical-Quantum Channels”. IEEE Transactions on Information Theory, vol. 62, no. 10, 2016, pp. 5960-5, https://doi.org/10.1109/tit.2016.2598835.
Cheng, H.-C., & Hsieh, M.-H. (2016). Concavity of the Auxiliary Function for Classical-Quantum Channels. IEEE Transactions on Information Theory, 62(10), 5960-5965. https://doi.org/10.1109/tit.2016.2598835
Cheng, Hao-Chung, and Min-Hsiu Hsieh. “Concavity of the Auxiliary Function for Classical-Quantum Channels”. IEEE Transactions on Information Theory 62, no. 10 (2016): 5960-65. https://doi.org/10.1109/tit.2016.2598835.
Cheng HC, Hsieh MH. Concavity of the Auxiliary Function for Classical-Quantum Channels. IEEE Transactions on Information Theory. 2016;62(10):5960-5.
Journal Categories
Science
Mathematics
Instruments and machines
Electronic computers
Computer science
Science
Science (General)
Cybernetics
Information theory
Technology
Electrical engineering
Electronics
Nuclear engineering
Electric apparatus and materials
Electric circuits
Electric networks
Technology
Electrical engineering
Electronics
Nuclear engineering
Telecommunication
Technology
Technology (General)
Industrial engineering
Management engineering
Information technology
Refrences
Title Journal Journal Categories Citations Publication Date
Log-majorizations and norm inequalities for exponential operators Banach Center Publications 30 1997
Convexity of the geodesic distance on spaces of positive operators Illinois Journal of Mathematics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
51 1994
Metric convexity of symmetric cones 2007
On the reliability function for a quantum communication channel 1998
Bounds for the quantity of information transmitted by a quantum communication channel 1973