Efficiency Bound of Learning with Coarse Graining

Article Properties
  • Publication Date
    2023/11/01
  • Indian UGC (journal)
  • Refrences
    33
  • Minghao 明昊 Li 李
  • Shihao 世豪 Xia 夏
  • Youlin 有林 Wang 王
  • Minglong 明龙 Lv 律
  • Jincan 金灿 Chen 陈
  • Shanhe 山河 Su 苏
Abstract
Cite
Li 李 Minghao 明昊, et al. “Efficiency Bound of Learning With Coarse Graining”. Chinese Physics Letters, vol. 40, no. 11, 2023, p. 110501, https://doi.org/10.1088/0256-307x/40/11/110501.
Li 李 M. 明., Xia 夏 S. 世., Wang 王 Y. 有., Lv 律 M. 明., Chen 陈 J. 金., & Su 苏 S. 山. (2023). Efficiency Bound of Learning with Coarse Graining. Chinese Physics Letters, 40(11), 110501. https://doi.org/10.1088/0256-307x/40/11/110501
Li 李 M明, Xia 夏 S世, Wang 王 Y有, Lv 律 M明, Chen 陈 J金, Su 苏 S山. Efficiency Bound of Learning with Coarse Graining. Chinese Physics Letters. 2023;40(11):110501.
Refrences
Title Journal Journal Categories Citations Publication Date
Thermodynamic uncertainty relations constrain non-equilibrium fluctuations Nature Physics
  • Science: Physics
  • Science: Physics
265 2020
Fundamental Relation Between Entropy Production and Heat Current Journal of Statistical Physics
  • Science: Mathematics
  • Science: Physics
21 2019
The free-energy cost of accurate biochemical oscillations Nature Physics
  • Science: Physics
  • Science: Physics
105 2015
Experimental verification of Landauer’s principle linking information and thermodynamics Nature
  • Science: Science (General)
645 2012
10.1038/nphys1821 Nature Physics
  • Science: Physics
  • Science: Physics
2010
Refrences Analysis
The category Science: Physics 39 is the most frequently represented among the references in this article. It primarily includes studies from Physical Review Letters The chart below illustrates the number of referenced publications per year.
Refrences used by this article by year