Reduction of monoclonal antibody viscosity using interpretable machine learning

Article Properties
  • Language
    English
  • Publication Date
    2024/03/12
  • Journal
  • Indian UGC (journal)
  • Refrences
    52
  • Emily K. Makowski Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USABiointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
  • Hsin-Ting Chen Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USADepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
  • Tiexin Wang Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USADepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
  • Lina Wu Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USADepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
  • Jie Huang Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USABiointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
  • Marissa Mock Therapeutic Discovery, Research, Amgen Inc, Thousand Oaks, CA, USA
  • Patrick Underhill Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
  • Emma Pelegri-O’Day Therapeutic Discovery, Research, Amgen Inc, Thousand Oaks, CA, USA
  • Erick Maglalang Drug Product Technologies, Amgen Inc, Thousand Oaks, CA, USA
  • Dwight Winters Therapeutic Discovery, Research, Amgen Inc, Thousand Oaks, CA, USA
  • Peter M. Tessier Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USABiointerfaces Institute, University of Michigan, Ann Arbor, MI, USADepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI, USADepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA ORCID (unauthenticated)
Cite
Makowski, Emily K., et al. “Reduction of Monoclonal Antibody Viscosity Using Interpretable Machine Learning”. MAbs, vol. 16, no. 1, 2024, https://doi.org/10.1080/19420862.2024.2303781.
Makowski, E. K., Chen, H.-T., Wang, T., Wu, L., Huang, J., Mock, M., Underhill, P., Pelegri-O’Day, E., Maglalang, E., Winters, D., & Tessier, P. M. (2024). Reduction of monoclonal antibody viscosity using interpretable machine learning. MAbs, 16(1). https://doi.org/10.1080/19420862.2024.2303781
Makowski EK, Chen HT, Wang T, Wu L, Huang J, Mock M, et al. Reduction of monoclonal antibody viscosity using interpretable machine learning. mAbs. 2024;16(1).
Journal Categories
Medicine
Internal medicine
Specialties of internal medicine
Immunologic diseases
Allergy
Medicine
Medicine (General)
Medicine
Therapeutics
Pharmacology
Refrences
Title Journal Journal Categories Citations Publication Date
Developability Assessment of Engineered Monoclonal Antibody Variants with a Complex Self-Association Behavior Using Complementary Analytical and in Silico Tools Molecular Pharmaceutics
  • Medicine: Medicine (General)
  • Medicine: Therapeutics. Pharmacology
  • Medicine: Public aspects of medicine: Toxicology. Poisons
41 2018
Pharmaceutical Perspective on Opalescence and Liquid–Liquid Phase Separation in Protein Solutions Molecular Pharmaceutics
  • Medicine: Medicine (General)
  • Medicine: Therapeutics. Pharmacology
  • Medicine: Public aspects of medicine: Toxicology. Poisons
82 2016
A single molecular descriptor to predict solution behavior of therapeutic antibodies

Science Advances
  • Science
  • Science: Science (General)
84 2020
Challenges in the development of high protein concentration formulations Journal of Pharmaceutical Sciences
  • Medicine: Therapeutics. Pharmacology
  • Science: Chemistry: General. Including alchemy
  • Medicine: Therapeutics. Pharmacology
  • Medicine: Public aspects of medicine: Toxicology. Poisons
625 2004
Automated two-step chromatography using an ÄKTA equipped with in-line dilution capability Journal of Chromatography A
  • Science: Chemistry: Organic chemistry: Biochemistry
  • Science: Chemistry: Analytical chemistry
  • Science: Chemistry: Analytical chemistry
  • Science: Chemistry: Analytical chemistry
  • Science: Chemistry
18 2015