Convergence of asymptotically negatively associated random variables with random coefficients

Article Properties
Cite
Meng, Bing, and Qunying Wu. “Convergence of Asymptotically Negatively Associated Random Variables With Random Coefficients”. Communications in Statistics - Theory and Methods, vol. 53, no. 8, 2022, pp. 2961-76, https://doi.org/10.1080/03610926.2022.2150058.
Meng, B., & Wu, Q. (2022). Convergence of asymptotically negatively associated random variables with random coefficients. Communications in Statistics - Theory and Methods, 53(8), 2961-2976. https://doi.org/10.1080/03610926.2022.2150058
Meng, Bing, and Qunying Wu. “Convergence of Asymptotically Negatively Associated Random Variables With Random Coefficients”. Communications in Statistics - Theory and Methods 53, no. 8 (2022): 2961-76. https://doi.org/10.1080/03610926.2022.2150058.
Meng B, Wu Q. Convergence of asymptotically negatively associated random variables with random coefficients. Communications in Statistics - Theory and Methods. 2022;53(8):2961-76.
Refrences
Title Journal Journal Categories Citations Publication Date
Limiting behavior of moving average processes based on a sequence of ρ− - mixing and NA random variables 2007
On the rate of moment complete convergence of sample sums and extremes 1988
Complete Moment Convergence for the Dependent Linear Processes with Random Coefficients Acta Mathematica Sinica, English Series
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
17 2019
On a Theorem of Hsu and Robbins The Annals of Mathematical Statistics 278 1949
Weak law of large numbers for linear processes Acta Mathematica Hungarica
  • Science: Mathematics
4 2016