A fractional Hopf Lemma for sign-changing solutions

Article Properties
  • Language
    English
  • Publication Date
    2024/04/25
  • Indian UGC (journal)
  • Refrences
    24
  • Serena Dipierro Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
  • Nicola Soave Dipartimento di Matematica “Giuseppe Peano”, Università degli Studi di Torino, Torino, Italy
  • Enrico Valdinoci Department of Mathematics and Statistics, University of Western Australia, Perth, Australia
Cite
Dipierro, Serena, et al. “A Fractional Hopf Lemma for Sign-Changing Solutions”. Communications in Partial Differential Equations, 2024, pp. 1-25, https://doi.org/10.1080/03605302.2024.2337637.
Dipierro, S., Soave, N., & Valdinoci, E. (2024). A fractional Hopf Lemma for sign-changing solutions. Communications in Partial Differential Equations, 1-25. https://doi.org/10.1080/03605302.2024.2337637
Dipierro, Serena, Nicola Soave, and Enrico Valdinoci. “A Fractional Hopf Lemma for Sign-Changing Solutions”. Communications in Partial Differential Equations, 2024, 1-25. https://doi.org/10.1080/03605302.2024.2337637.
Dipierro S, Soave N, Valdinoci E. A fractional Hopf Lemma for sign-changing solutions. Communications in Partial Differential Equations. 2024;:1-25.
Refrences
Title Journal Journal Categories Citations Publication Date
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 1983
Lecture Notes of the Unione Matematica Italiana 2016
Bonner Mathematische Schriften [Bonn Mathematical Publications] 2000
All functions are locally $s$-harmonic up to a small error Journal of the European Mathematical Society
  • Science: Mathematics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
4 2017
Symmetry and quantitative stability for the parallel surface fractional torsion problem

Transactions of the American Mathematical Society
  • Science: Mathematics
5 2023