Fluctuations for Some Nonstationary Interacting Particle Systems via Boltzmann–Gibbs Principle

Article Properties
Abstract
Cite
Yang, Kevin. “Fluctuations for Some Nonstationary Interacting Particle Systems via Boltzmann–Gibbs Principle”. Forum of Mathematics, Sigma, vol. 11, 2023, https://doi.org/10.1017/fms.2023.27.
Yang, K. (2023). Fluctuations for Some Nonstationary Interacting Particle Systems via Boltzmann–Gibbs Principle. Forum of Mathematics, Sigma, 11. https://doi.org/10.1017/fms.2023.27
Yang, Kevin. “Fluctuations for Some Nonstationary Interacting Particle Systems via Boltzmann–Gibbs Principle”. Forum of Mathematics, Sigma 11 (2023). https://doi.org/10.1017/fms.2023.27.
Yang K. Fluctuations for Some Nonstationary Interacting Particle Systems via Boltzmann–Gibbs Principle. Forum of Mathematics, Sigma. 2023;11.
Journal Categories
Science
Mathematics
Technology
Technology (General)
Industrial engineering
Management engineering
Applied mathematics
Quantitative methods
Refrences
Title Journal Journal Categories Citations Publication Date
A Central Limit Theorem for the Weakly Asymmetric Simple Exclusion Process

Mathematische Nachrichten
  • Science: Mathematics
23 1991
Energy solutions of KPZ are unique 2018
Stochastic PDE limit of the six vertex model Communications in Mathematical Physics
  • Science: Mathematics
  • Science: Physics
2012
Hydrodynamic limit for asymmetric mean zero exclusion processes with speed change 1998
The weakly asymmetric simple exclusion process 1989