An algebraic semantics for possibilistic finite-valued Łukasiewicz logic

Article Properties
Cite
Busaniche, M., et al. “An Algebraic Semantics for Possibilistic Finite-Valued Łukasiewicz Logic”. International Journal of Approximate Reasoning, vol. 159, 2023, p. 108924, https://doi.org/10.1016/j.ijar.2023.108924.
Busaniche, M., Cordero, P., Marcos, M., & Rodriguez, R. (2023). An algebraic semantics for possibilistic finite-valued Łukasiewicz logic. International Journal of Approximate Reasoning, 159, 108924. https://doi.org/10.1016/j.ijar.2023.108924
Busaniche, M., P. Cordero, M. Marcos, and R.O. Rodriguez. “An Algebraic Semantics for Possibilistic Finite-Valued Łukasiewicz Logic”. International Journal of Approximate Reasoning 159 (2023): 108924. https://doi.org/10.1016/j.ijar.2023.108924.
Busaniche M, Cordero P, Marcos M, Rodriguez R. An algebraic semantics for possibilistic finite-valued Łukasiewicz logic. International Journal of Approximate Reasoning. 2023;159:108924.
Journal Categories
Science
Mathematics
Instruments and machines
Electronic computers
Computer science
Technology
Electrical engineering
Electronics
Nuclear engineering
Electronics
Technology
Mechanical engineering and machinery
Refrences
Title Journal Journal Categories Citations Publication Date
Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic Soft Computing
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
  • Technology: Mechanical engineering and machinery
  • Technology: Electrical engineering. Electronics. Nuclear engineering: Electronics
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
3 2019
Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics Studia Logica
  • Science: Mathematics
  • Science: Mathematics
  • Philosophy. Psychology. Religion: Philosophy (General)
21 2013
Modal languages and bounded fragments of predicate logic 1998
Many-valued modal logics and many-valued modal logics II 1991
Corrigendum to “Algebraic semantics for the minimum many-valued modal logic over Łn” 2022