Duality methods for a class of quasilinear systems

Article Properties
  • Publication Date
    2014/04/01
  • Indian UGC (journal)
  • Refrences
    20
  • Antonella Marini Dipartimento di Matematica, Università di L'Aquila, 67100 L'Aquila, ItalyDepartment of Mathematical Sciences, Yeshiva University, New York, NY 10033, United States
  • Thomas H. Otway Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, United States
Cite
Marini, Antonella, and Thomas H. Otway. “Duality Methods for a Class of Quasilinear Systems”. Annales De l’Institut Henri Poincaré C, Analyse Non linéaire, vol. 31, no. 2, 2014, pp. 339-48, https://doi.org/10.1016/j.anihpc.2013.03.007.
Marini, A., & Otway, T. H. (2014). Duality methods for a class of quasilinear systems. Annales De l’Institut Henri Poincaré C, Analyse Non linéaire, 31(2), 339-348. https://doi.org/10.1016/j.anihpc.2013.03.007
Marini A, Otway TH. Duality methods for a class of quasilinear systems. Annales de l’Institut Henri Poincaré C, Analyse non linéaire. 2014;31(2):339-48.
Refrences
Title Journal Journal Categories Citations Publication Date
Extensions of the duality between minimal surfaces and maximal surfaces Geometriae Dedicata
  • Science: Mathematics
11 2011
Nonlinear Hodge–Frobenius equations and the Hodge–Bäcklund transformation 2010
Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces Journal of Geometry and Physics
  • Science: Mathematics
  • Science: Mathematics
40 2009
Generalized Bernstein property and gravitational strings in Born–Infeld theory Nonlinearity
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
  • Science: Mathematics
4 2007
Advances in differential forms and the A-harmonic equations Mathematical and Computer Modelling 2003
Refrences Analysis
The category Science: Mathematics 6 is the most frequently represented among the references in this article. It primarily includes studies from Mathematical and Computer Modelling and Anais da Academia Brasileira de Ciências. The chart below illustrates the number of referenced publications per year.
Refrences used by this article by year