Affine statistical bundle modeled on a Gaussian Orlicz–Sobolev space

Article Properties
Cite
Pistone, Giovanni. “Affine Statistical Bundle Modeled on a Gaussian Orlicz–Sobolev Space”. Information Geometry, vol. 7, no. S1, 2022, pp. 109-30, https://doi.org/10.1007/s41884-022-00078-6.
Pistone, G. (2022). Affine statistical bundle modeled on a Gaussian Orlicz–Sobolev space. Information Geometry, 7(S1), 109-130. https://doi.org/10.1007/s41884-022-00078-6
Pistone G. Affine statistical bundle modeled on a Gaussian Orlicz–Sobolev space. Information Geometry. 2022;7(S1):109-30.
Refrences
Title Journal Journal Categories Citations Publication Date
Computational Optimal Transport: With Applications to Data Science Foundations and Trends® in Machine Learning
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
648 2019
Lagrangian Function on the Finite State Space Statistical Bundle Entropy
  • Science: Astronomy: Astrophysics
  • Science: Physics
  • Science: Physics
  • Science: Physics
4 2018
Wasserstein Riemannian geometry of Gaussian densities Information Geometry 30 2018
Natural gradient via optimal transport Information Geometry 23 2018
Uniqueness of the Fisher–Rao metric on the space of smooth densities Bulletin of the London Mathematical Society
  • Science: Mathematics
34 2016
Citations
Title Journal Journal Categories Citations Publication Date
Global differentiable structures for the Fisher-Rao and Kantorovich-Wasserstein-Otto metrics Journal of Mathematical Analysis and Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2024
Citations Analysis
The category Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods 1 is the most commonly referenced area in studies that cite this article.