Constructible sheaves and functions up to infinity

Article Properties
Cite
Schapira, Pierre. “Constructible Sheaves and Functions up to Infinity”. Journal of Applied and Computational Topology, vol. 7, no. 4, 2023, pp. 707-39, https://doi.org/10.1007/s41468-023-00121-0.
Schapira, P. (2023). Constructible sheaves and functions up to infinity. Journal of Applied and Computational Topology, 7(4), 707-739. https://doi.org/10.1007/s41468-023-00121-0
Schapira P. Constructible sheaves and functions up to infinity. Journal of Applied and Computational Topology. 2023;7(4):707-39.
Refrences
Title Journal Journal Categories Citations Publication Date
The six Grothendieck operations on o-minimal sheaves Mathematische Zeitschrift
  • Science: Mathematics
3 2020
10.1527/tjsai.D-G72 2017
Persistent homology and microlocal sheaf theory Journal of Applied and Computational Topology 16 2018
Riemann-Hilbert correspondence for holonomic D-modules Publications mathématiques de l'IHÉS
  • Science: Mathematics
16 2016
Irregular holonomic kernels and Laplace transform Selecta Mathematica
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
12 2016
Citations
Title Journal Journal Categories Citations Publication Date
Thickening of the diagonal and interleaving distance Selecta Mathematica
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
1 2023
Citations Analysis
The category Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods 1 is the most commonly referenced area in studies that cite this article.