On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives

Article Properties
Cite
Liu, Yifeng, et al. “On the Beilinson–Bloch–Kato Conjecture for Rankin–Selberg Motives”. Inventiones Mathematicae, vol. 228, no. 1, 2022, pp. 107-75, https://doi.org/10.1007/s00222-021-01088-4.
Liu, Y., Tian, Y., Xiao, L., Zhang, W., & Zhu, X. (2022). On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives. Inventiones Mathematicae, 228(1), 107-375. https://doi.org/10.1007/s00222-021-01088-4
Liu Y, Tian Y, Xiao L, Zhang W, Zhu X. On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives. Inventiones mathematicae. 2022;228(1):107-375.
Refrences
Title Journal Journal Categories Citations Publication Date
Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture Annals of Mathematics
  • Science: Mathematics
6 2021
10.4310/PAMQ.2021.v17.n2.a8 Pure and Applied Mathematics Quarterly
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2021
10.4310/CJM.2021.v9.n1.a1 Cambridge Journal of Mathematics
  • Science: Mathematics
2021
Supersingular locus of Hilbert modular varieties, arithmetic level raising and Selmer groups Algebra & Number Theory
  • Science: Mathematics
2 2020
10.4171/JEMS/865 2019
Citations
Title Journal Journal Categories Citations Publication Date
A $p$-adic arithmetic inner product formula

Inventiones mathematicae
  • Science: Mathematics
2024
Arithmetic level raising on triple product of Shimura curves and Gross–Schoen Diagonal cycles, I : Ramified case Algebra & Number Theory
  • Science: Mathematics
2022
Citations Analysis
Category Category Repetition
Science: Mathematics2
The category Science: Mathematics 2 is the most commonly referenced area in studies that cite this article.