Categorical Milnor squares and K-theory of algebraic stacks

Article Properties
Cite
Bachmann, Tom, et al. “Categorical Milnor squares and K-Theory of algebraic stacks”. Selecta Mathematica, vol. 28, no. 5, 2022, https://doi.org/10.1007/s00029-022-00796-w.
Bachmann, T., Khan, A. A., Ravi, C., & Sosnilo, V. (2022). Categorical Milnor squares and K-theory of algebraic stacks. Selecta Mathematica, 28(5). https://doi.org/10.1007/s00029-022-00796-w
Bachmann T, Khan AA, Ravi C, Sosnilo V. Categorical Milnor squares and K-theory of algebraic stacks. Selecta Mathematica. 2022;28(5).
Journal Categories
Science
Mathematics
Technology
Technology (General)
Industrial engineering
Management engineering
Applied mathematics
Quantitative methods
Refrences
Title Journal Journal Categories Citations Publication Date
Weibel’s conjecture for twisted K-theory Annals of K-Theory
  • Science: Mathematics
1 2020
On the $K$-theory of pullbacks Annals of Mathematics
  • Science: Mathematics
23 2019
The Morel–Voevodsky localization theorem in spectral algebraic geometry Geometry & Topology
  • Science: Mathematics
5 2019
Vanishing theorems for the negative K-theory of stacks Annals of K-Theory
  • Science: Mathematics
6 2019
10.1112/S0010437X18007236 2018
Citations
Title Journal Journal Categories Citations Publication Date
On the K-theory of regular coconnective rings

Selecta Mathematica
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
1 2023
Citations Analysis
The category Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods 1 is the most commonly referenced area in studies that cite this article.