Well-posedness of fully nonlinear and nonlocal critical parabolic equations

Article Properties
Cite
Zhang, Xicheng. “Well-Posedness of Fully Nonlinear and Nonlocal Critical Parabolic Equations”. Journal of Evolution Equations, vol. 13, no. 1, 2012, pp. 135-62, https://doi.org/10.1007/s00028-012-0172-0.
Zhang, X. (2012). Well-posedness of fully nonlinear and nonlocal critical parabolic equations. Journal of Evolution Equations, 13(1), 135-162. https://doi.org/10.1007/s00028-012-0172-0
Zhang, Xicheng. “Well-Posedness of Fully Nonlinear and Nonlocal Critical Parabolic Equations”. Journal of Evolution Equations 13, no. 1 (2012): 135-62. https://doi.org/10.1007/s00028-012-0172-0.
Zhang X. Well-posedness of fully nonlinear and nonlocal critical parabolic equations. Journal of Evolution Equations. 2012;13(1):135-62.
Journal Categories
Science
Mathematics
Technology
Technology (General)
Industrial engineering
Management engineering
Applied mathematics
Quantitative methods
Refrences
Title Journal Journal Categories Citations Publication Date
10.1214/12-AAP851 2012
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Annals of Mathematics
  • Science: Mathematics
513 2010
Regularity theory for fully nonlinear integro‐differential equations

Communications on Pure and Applied Mathematics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
338 2009
10.1142/S0219891607001227 Journal of Hyperbolic Differential Equations
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
  • Science: Mathematics
2007
Fractal First-Order Partial Differential Equations Archive for Rational Mechanics and Analysis
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Technology: Engineering (General). Civil engineering (General): Mechanics of engineering. Applied mechanics
  • Technology: Mechanical engineering and machinery
  • Science: Mathematics
112 2006