A new combinatorial characterization of (quasi)-Hermitian surfaces

Article Properties
Abstract
Cite
Napolitano, Vito. “A New Combinatorial Characterization of (quasi)-Hermitian Surfaces”. Journal of Geometry, vol. 114, no. 2, 2023, https://doi.org/10.1007/s00022-023-00681-7.
Napolitano, V. (2023). A new combinatorial characterization of (quasi)-Hermitian surfaces. Journal of Geometry, 114(2). https://doi.org/10.1007/s00022-023-00681-7
Napolitano, Vito. “A New Combinatorial Characterization of (quasi)-Hermitian Surfaces”. Journal of Geometry 114, no. 2 (2023). https://doi.org/10.1007/s00022-023-00681-7.
Napolitano V. A new combinatorial characterization of (quasi)-Hermitian surfaces. Journal of Geometry. 2023;114(2).
Refrences
Title Journal Journal Categories Citations Publication Date
The characterization of Hermitian surfaces by the number of points Journal of Geometry
  • Science: Mathematics
10 2016
A combinatorial characterization of the Hermitian surface Discrete Mathematics
  • Science: Mathematics
9 2013
An elementary bound for the number of points of a hypersurface over a finite field Finite Fields and Their Applications
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
14 2013
A note on quasi-Hermitian varieties and singular quasi-quadrics Bulletin of the Belgian Mathematical Society - Simon Stevin
  • Science: Mathematics
10 2010
Segre, B.: Le geometrie di Galois. Ann. Mat. Pura App. 48(4), 1–96 (1959) 1959