Pullback D$$ \mathcal{D} $$‐attractors for doubly nonlinear parabolic equations

Article Properties
  • Language
    English
  • DOI (url)
  • Publication Date
    2022/12/08
  • Indian UGC (journal)
  • Refrences
    18
  • Yongjun Li School of Electronic Engineering Lanzhou City University Lanzhou 730070 P.R. China ORCID (unauthenticated)
  • Jinying Wei School of Information Engineering Lanzhou City University Lanzhou 730070 P.R. China
  • Li Chen School of Information Engineering Lanzhou City University Lanzhou 730070 P.R. China
Abstract
Cite
Li, Yongjun, et al. “Pullback D$$ \mathcal{D} $$‐attractors for Doubly Nonlinear Parabolic Equations”. Mathematical Methods in the Applied Sciences, vol. 46, no. 6, 2022, pp. 6674-85, https://doi.org/10.1002/mma.8932.
Li, Y., Wei, J., & Chen, L. (2022). Pullback D$$ \mathcal{D} $$‐attractors for doubly nonlinear parabolic equations. Mathematical Methods in the Applied Sciences, 46(6), 6674-6685. https://doi.org/10.1002/mma.8932
Li, Yongjun, Jinying Wei, and Li Chen. “Pullback D$$ \mathcal{D} $$‐attractors for Doubly Nonlinear Parabolic Equations”. Mathematical Methods in the Applied Sciences 46, no. 6 (2022): 6674-85. https://doi.org/10.1002/mma.8932.
Li Y, Wei J, Chen L. Pullback D$$ \mathcal{D} $$‐attractors for doubly nonlinear parabolic equations. Mathematical Methods in the Applied Sciences. 2022;46(6):6674-85.
Refrences
Title Journal Journal Categories Citations Publication Date
Pullback attractors for a class of non‐autonomous semilinear parabolic equations with infinite delay 2021
Pullback attractor and invariant measures for the discrete Zakharov equations 2019
Global attractor for doubly nonlinear parabolic equation 2012
Large time behavior for doubly nonlinear systems generated by subdifferentials 2000
The asymptotic behavior of a gas in n‐dimensional porous medium 1980