Maximum principle for stable operators

Article Properties
Abstract
Cite
Grube, Florian, and Thorben Hensiek. “Maximum Principle for Stable Operators”. Mathematische Nachrichten, vol. 296, no. 12, 2023, pp. 5684-02, https://doi.org/10.1002/mana.202200354.
Grube, F., & Hensiek, T. (2023). Maximum principle for stable operators. Mathematische Nachrichten, 296(12), 5684-5702. https://doi.org/10.1002/mana.202200354
Grube, Florian, and Thorben Hensiek. “Maximum Principle for Stable Operators”. Mathematische Nachrichten 296, no. 12 (2023): 5684-5702. https://doi.org/10.1002/mana.202200354.
Grube F, Hensiek T. Maximum principle for stable operators. Mathematische Nachrichten. 2023;296(12):5684-702.
Refrences
Title Journal Journal Categories Citations Publication Date
Potential theory of Schrödinger operator based on fractional Laplacian Probability and Mathematical Statistics
  • Science: Mathematics: Probabilities. Mathematical statistics
  • Science: Mathematics
2000
Fonctions harmoniques pour les potentiels de Riesz sur la boule unité Expositiones Mathematicae
  • Science: Mathematics
1994
Nonlocal operators of small order 2022
Sur la forme intégro‐différentielle des opérateurs de ck∞$c^\infty _k$ dans c satisfaisant au principe du maximum 1965
Cambridge Studies in Advanced Mathematics 1999
Citations
Title Journal Journal Categories Citations Publication Date
The Dirichlet problem for Lévy-stable operators with $$L^2$$-data

Calculus of Variations and Partial Differential Equations
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
2024
Citations Analysis
The category Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods 1 is the most commonly referenced area in studies that cite this article. The first research to cite this article was titled The Dirichlet problem for Lévy-stable operators with $$L^2$$-data and was published in 2024. The most recent citation comes from a 2024 study titled The Dirichlet problem for Lévy-stable operators with $$L^2$$-data. This article reached its peak citation in 2024, with 1 citations. It has been cited in 1 different journals. Among related journals, the Calculus of Variations and Partial Differential Equations cited this research the most, with 1 citations. The chart below illustrates the annual citation trends for this article.
Citations used this article by year