Weighted estimates for square functions associated with operators

Article Properties
  • Language
    English
  • Publication Date
    2023/05/01
  • Indian UGC (journal)
  • Refrences
    40
  • Yongming Wen School of Mathematics and Statistics Minnan Normal University Zhangzhou China ORCID (unauthenticated)
  • Qinrui Shen School of Mathematics and Statistics Minnan Normal University Zhangzhou China
  • Junjun Sun School of Mathematics and Statistics Minnan Normal University Zhangzhou China
Abstract
Cite
Wen, Yongming, et al. “Weighted Estimates for Square Functions Associated With Operators”. Mathematische Nachrichten, vol. 296, no. 8, 2023, pp. 3725-39, https://doi.org/10.1002/mana.202100640.
Wen, Y., Shen, Q., & Sun, J. (2023). Weighted estimates for square functions associated with operators. Mathematische Nachrichten, 296(8), 3725-3739. https://doi.org/10.1002/mana.202100640
Wen, Yongming, Qinrui Shen, and Junjun Sun. “Weighted Estimates for Square Functions Associated With Operators”. Mathematische Nachrichten 296, no. 8 (2023): 3725-39. https://doi.org/10.1002/mana.202100640.
Wen Y, Shen Q, Sun J. Weighted estimates for square functions associated with operators. Mathematische Nachrichten. 2023;296(8):3725-39.
Refrences
Title Journal Journal Categories Citations Publication Date
A new proof of the boundedness of maximal operators on variable Lebesgue spaces 2009
The boundedness of classical operators on variable Lp$L^p$ spaces 2006
Maximal function on generalized Lebesgue spaces Lp(·)$L^{p(\cdot )}$ 2004
On the two‐weight problem for singular integral operators 2002
Inserting Ap$A_p$‐weights Proceedings of the American Mathematical Society
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
1983