The Brezis–Nirenberg problem for fractional elliptic operators

Article Properties
  • Language
    English
  • Publication Date
    2016/11/18
  • Indian UGC (journal)
  • Refrences
    27
  • Citations
    1
  • Ko‐Shin Chen Department of Mathematics University of Connecticut Storrs CT 06269 USA
  • Marcos Montenegro Departamento de Matemática Universidade Federal de Minas Gerais Belo Horizonte 30123‐970 Brazil
  • Xiaodong Yan Department of Mathematics University of Connecticut Storrs CT 06269 USA
Abstract
Cite
Chen, Ko‐Shin, et al. “The Brezis–Nirenberg Problem for Fractional Elliptic Operators”. Mathematische Nachrichten, vol. 290, no. 10, 2016, pp. 1491-1, https://doi.org/10.1002/mana.201600072.
Chen, K., Montenegro, M., & Yan, X. (2016). The Brezis–Nirenberg problem for fractional elliptic operators. Mathematische Nachrichten, 290(10), 1491-1511. https://doi.org/10.1002/mana.201600072
Chen K, Montenegro M, Yan X. The Brezis–Nirenberg problem for fractional elliptic operators. Mathematische Nachrichten. 2016;290(10):1491-51.
Refrences
Title Journal Journal Categories Citations Publication Date
10.1007/978-3-642-61798-0 2001
Travaux et Recherches Mathématiques 17 1968
An Extension Problem Related to the Fractional Laplacian Communications in Partial Differential Equations
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
1,670 2007
Positive solutions of nonlinear problems involving the square root of the Laplacian Advances in Mathematics
  • Science: Mathematics
396 2010
Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates Annales de l'Institut Henri Poincaré C, Analyse non linéaire
  • Science: Mathematics
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
321 2014
Citations
Title Journal Journal Categories Citations Publication Date
On the existence of multiple solutions for fractional Brezis–Nirenberg‐type equations

Mathematische Nachrichten
  • Science: Mathematics
2022
Citations Analysis
Category Category Repetition
Science: Mathematics1
The category Science: Mathematics 1 is the most commonly referenced area in studies that cite this article.