Existential definability of modal frame classes

Article Properties
  • Language
    English
  • Publication Date
    2020/09/18
  • Indian UGC (journal)
  • Refrences
    16
  • Tin Perkov Chair of Mathematics and Statistics Učiteljski Fakultet Sveučilište u Zagrebu Savska cesta 77 Zagreb 10000 Croatia ORCID (unauthenticated)
  • Luka Mikec Department of Mathematics, Prirodoslovno‐Matematički Fakultet Sveučilište u Zagrebu Bijenička cesta 30 Zagreb 10000 Croatia
Abstract
Cite
Perkov, Tin, and Luka Mikec. “Existential Definability of Modal Frame Classes”. Mathematical Logic Quarterly, vol. 66, no. 3, 2020, pp. 316-25, https://doi.org/10.1002/malq.201900061.
Perkov, T., & Mikec, L. (2020). Existential definability of modal frame classes. Mathematical Logic Quarterly, 66(3), 316-325. https://doi.org/10.1002/malq.201900061
Perkov, Tin, and Luka Mikec. “Existential Definability of Modal Frame Classes”. Mathematical Logic Quarterly 66, no. 3 (2020): 316-25. https://doi.org/10.1002/malq.201900061.
Perkov T, Mikec L. Existential definability of modal frame classes. Mathematical Logic Quarterly. 2020;66(3):316-25.
Refrences
Title Journal Journal Categories Citations Publication Date
Local Goldblatt–Thomason theorem Logic Journal of the IGPL
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
  • Science: Mathematics
1 2015
Some characterization and preservation theorems in modal logic Annals of Pure and Applied Logic
  • Technology: Technology (General): Industrial engineering. Management engineering: Applied mathematics. Quantitative methods
  • Science: Mathematics
  • Science: Mathematics
2 2012
Characterizations of negative definability in modal logic 1998
Derivation rules as anti-axioms in modal logic

The Journal of Symbolic Logic
  • Science: Mathematics
  • Science: Mathematics
24 1993
Using the Universal Modality: Gains and Questions Journal of Logic and Computation
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
  • Science: Mathematics
  • Science: Mathematics: Instruments and machines: Electronic computers. Computer science
99 1992