DEFORMATION QUANTIZATION OF CLASSICAL FIELDS

Article Properties
  • Language
    English
  • Publication Date
    2001/06/10
  • Indian UGC (Journal)
  • Refrences
    27
  • H. GARCÍA-COMPEÁN Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México D.F., Mexico
  • J. F. PLEBAŃSKI Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México D.F., Mexico
  • M. PRZANOWSKI Institute of Physics, Technical University of Łódź, Wólczańska 219, 93-005, Łódź, PolandDepartamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México D.F., Mexico
  • F. J. TURRUBIATES Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, México D.F., Mexico
Abstract
Cite
GARCÍA-COMPEÁN, H., et al. “DEFORMATION QUANTIZATION OF CLASSICAL FIELDS”. International Journal of Modern Physics A, vol. 16, no. 14, 2001, pp. 2533-58, https://doi.org/10.1142/s0217751x01003652.
GARCÍA-COMPEÁN, H., PLEBAŃSKI, J. F., PRZANOWSKI, M., & TURRUBIATES, F. J. (2001). DEFORMATION QUANTIZATION OF CLASSICAL FIELDS. International Journal of Modern Physics A, 16(14), 2533-2558. https://doi.org/10.1142/s0217751x01003652
GARCÍA-COMPEÁN H, PLEBAŃSKI JF, PRZANOWSKI M, TURRUBIATES FJ. DEFORMATION QUANTIZATION OF CLASSICAL FIELDS. International Journal of Modern Physics A. 2001;16(14):2533-58.
Journal Categories
Science
Physics
Science
Physics
Atomic physics
Constitution and properties of matter
Science
Physics
Nuclear and particle physics
Atomic energy
Radioactivity
Description

Can the principles of quantum mechanics be applied to classical fields? This research delves into the deformation quantization of scalar and Abelian gauge classical free fields, exploring a fascinating intersection between classical and quantum physics. The study obtains Stratonovich–Weyl quantizers, star products, and Wigner functionals using both field and oscillator variables, providing a comprehensive mathematical framework for understanding the quantum behavior of these fields. Particularly intriguing is the analysis of Abelian gauge theory, which reveals that the Wigner functional can be factorized into a physical part and another containing only constraints. This decomposition offers insights into the underlying structure of the theory and its topological properties. The research further considers the effects of nontrivial topology within the deformation quantization formalism, expanding the understanding of these complex systems. By bridging the gap between classical and quantum descriptions, this work has significant implications for theoretical physics, offering new perspectives on field quantization and gauge theory.

This article, appearing in the International Journal of Modern Physics A, is relevant to the journal's coverage of modern physics topics, particularly in the areas of nuclear and particle physics, atomic physics, and the constitution and properties of matter. The paper's theoretical investigation contributes to the understanding of quantum field theory and its mathematical foundations.

Refrences